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Abstract
The knotting in a lattice polygon model of ring polymers is examined when
a stretching force is applied to the polygon. By examining the incidence of
cut-planes in the polygon, we prove a pattern theorem in the stretching regime
for large applied forces. This theorem can be used to examine the incidence of
entanglements such as knotting and writhing. In particular, we prove that for
arbitrarily large positive, but finite, values of the stretching force, the probability
that a stretched polygon is knotted approaches 1 as the length of the polygon
increases. In the case of writhing, we prove that for stretched polygons of length
n, and for every function f (n) = o(

√
n), the probability that the absolute value

of the mean writhe is less than f (n) approaches 0 as n → ∞, for sufficiently
large values of the applied stretching force.

PACS number:
Mathematics Subject Classification: 82B41, 57M25, 82D60

1. Introduction

Micro-manipulation techniques [10, 23] have made possible the probing and manipulation of
single polymeric molecules to study their mechanical properties. For example, the effects
of knotting on the mechanical properties of a linear polymer have been considered recently
by Farago and co-workers [3]. These advanced laboratory techniques induce forces in single
polymers, which may in turn affect the statistical and physical properties of the molecule, thus
altering the incidence of topological and geometric quantities such as knotting and writhing.

A related situation is encountered when polymeric molecules are confined to a narrow
pore or slit and interacting with the walls of the confining space [2, 21, 25]. These situations
have been modeled by bead-spring models of polymers interacting with spheres or walls [20]
and also numerically and rigorously using a self-avoiding walk model of a linear polymer in
a slab [14, 15]. In these models there are attractive and repulsive forces between the polymer
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and the walls of the confining space, and several phases have been identified in the models,
depending on the strength and nature of the forces.

Entanglements are an unavoidable feature in linear polymers in the scaling limit, even
in confining spaces or when in an adsorbed state [26, 28]. The incidence of geometric
and topological entanglements in polymeric molecules contributes to the free energy and
may have an important effect on the thermodynamic properties of these molecules and on
their mechanical properties [27]. Applied forces on a polymeric molecule may affect or
influence the incidence of entanglements, with resulting consequences for the free energy and
thermodynamic properties of the model.

In this paper we examine rigorously a self-avoiding walk model of a ring polymer pulled
by a force, by subjecting a lattice polygon to an applied external force along the Z-direction of
the lattice. This situation models a ring polymer, such as circular DNA, subject to a force in
the presence of a topoisomerase which mediates strand passages which may change the knot
type of the polymer.

We prove that this model has a limiting free energy F(f ), and that the free energy is
a non-decreasing and convex function of the applied force f . We next consider stretched
polygons subject to an applied force, and we prove a pattern theorem for arbitrarily large
positive values of the applied force f stretching the polygon. The method of proof relies on
the incidence of cut-planes in the polygon (these are planes cutting the polygon into sub-walks
with endpoints with minimum and maximum Z-coordinates). We prove that for large enough
values of the force f there is a positive density of such cut-planes in the limit as the length of
the polygons goes to infinity. This allows us to prove a pattern theorem in this model, which
is presented in sections 3 and 4.

In section 5, some consequences of the pattern theorem are examined. In particular,
we consider the incidence of knots in stretched polygons, and prove that for arbitrarily large
positive but finite values of f a stretched polygon will be knotted with probability 1 in the
limit as its length approaches infinity. We also consider writhe of stretched polygons, and
we generalize a result for polygons to stretched polygons [13]: the absolute writhing of a
stretched polygon of length n increases at least proportionally to

√
n with probability 1, if the

applied force is a pulling or stretching force.

2. Stretched polygons

Let pn be the number of polygons of length n in the hypercubic lattice Z
d , undirected and

counted up to equivalence under translations. Similarly, let cn be the number of self-avoiding
walks of length n, undirected and counted up to equivalence under translations. It is known
that the limits

lim
n→∞ c1/n

n = lim
n→∞ p1/n

n = µ (1)

exist [6, 8]. The limit of p
1/n
n is taken only through even values of n, and in this paper we

shall assume, without mentioning this again, that n is even and that limits such as the above
are taken through the sequence of even numbers when we consider polygons. The number µ

is the growth constant of self-avoiding walks.
Consider the d-dimensional hypercubic lattice Z

d . If x ∈ Z
d is a vertex in Z

d , then the
coordinates of x are denoted by (X(x), Y (x), . . . , Z(x)). The dth coordinate of x will always
be denoted by Z(x). The s-slab Ls ⊂ Z

d is the set

Ls = {x ∈ Z
d | 0 � Z(x) � s}.
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Figure 1. Concatenation of two stretched polygons ω1 in Ls1 and ω2 in Ls−s1 . Translate Ls−s1 until
its bottom bounding plane has Z-coordinate one more than the Z-coordinate of Ls1 , as in figure 1.
Next, rotate ω2 (about the Z-axis) and translate it in Ls−s1 until its bottom edge is parallel and
next neighbor to the top edge of ω1 in Ls1 . Finally, delete these top and bottom edges and replace
them with two edges in the Z-direction to join the polygons into one single stretched polygon in
Ls+1. If the first stretched polygon had length n, and the second had length m, then the resulting
polygon has length n + m. There are pn(s1) choices for ω1 and pm(s − s1)/(d − 1) choices for ω2
(the factor (d − 1) arises from the rotations of ω2 in Ls−s1 ). There are also s + 1 choices for s1 in
[0, s]. Thus, the result is the inequality in equation (3). Observe that a cut-plane is created when
two stretched polygons are concatenated in this way.

The planes Z = 0 and Z = s are the bottom and top bounding planes of the slab Ls ,
respectively. Walks and polygons confined to Ls are called strained, and this model was
considered in [15, 26].

Consider pn(s), the number of lattice polygons of Z-span s, confined in the s-slab Ls

with Z-span s, and counted up to equivalence under translations parallel to the bottom-
bounding plane. The partition function of polygons in the strained ensemble is given by
Zs

n(s) = pn(s). The limiting free energy of this model is known to exist [15], and is defined
by Fs(s) = limn→∞

[
log Zs

n(s)
]/

n.
An alternative ensemble is the stressed ensemble, defined by the introduction of a force

of f on the bounding planes of the slab. The partition function of this model is

Zn(f ) =
n/2−1∑
s=0

pn(s) ef s (2)

where f is a force conjugate to the Z-span s. If f > 0, then the force is a pulling force, tending
to stretch the polygon in the Z-direction: we refer to these polygons as stretched polygons. If
f < 0, then the force tends to push the planes bounding the slab Ls together. This negative
force regime appears difficult to treat rigorously, and not much will be said about it in this
paper beyond proving that a limiting free energy exists (see theorem 2.1).

The top vertex of a stretched polygon is the lexicographic most vertex in the top-bounding
plane. The bottom vertex of a stretched polygon is the lexicographic least vertex in the bottom
bounding plane. The top edge of a stretched polygon is that edge in the top bounding plane
incident with the top vertex and with lexicographic most midpoint. The top edge is always
incident with the top vertex, and it is normal to the Z-direction. The bottom edge of a stretched
polygon is that edge in the bottom bounding plane incident with the bottom vertex and with
lexicographic least midpoint. The bottom edge is always incident with the bottom vertex, and
it is normal to the Z-direction.

A cut-plane in a stretched polygon is a plane Z = N + 1/2 normal to the Z-direction
where N is an integer and which cuts through the polygon in exactly two edges. A cut-plane
is illustrated in figure 1.
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Two stretched polygons can be concatenated into a single stretched polygon as illustrated
in figure 1. Consider two stretched polygons in slabs Ls1 and in Ls−s1 . Translate the second
slab until its bottom bounding plane has Z-coordinate one more than the Z-coordinate of the
top bounding plane of the first slab, as in figure 1. Next, rotate (around the Z-axis) and translate
the polygon in Ls−s1 until its bottom edge is parallel and next neighbor to the top edge of the
polygon in Ls1 . Finally, delete these top and bottom edges and replace them with two edges
in the Z-direction to join the polygons into one single stretched polygon in Ls+1. If the first
stretched polygon had length n, and the second had length m, then the resulting polygon has
length n + m. There are pn(s1) choices for the polygon in the slab Ls1 and pm(s − s1)/(d − 1)

choices for the polygon in the slab Ls−s1 (the factor (d − 1) arises from the rotations of the
polygon in Ls−s1 ). There are also s + 1 choices for s1 in [0, s]. This construction shows that

s∑
s1=0

pn(s1)pm(s − s1) � (d − 1)pn+m(s + 1). (3)

If the inequality (3) is multiplied by ef s and summed over s, then

Zn(f )Zm(f ) � (d − 1) e−f Zn+m(f ). (4)

In other words, the function [ef /(d − 1)]Zn(f ) is a supermultiplicative function of n. In
addition, observe that if n � 4 is even, then Zn(f ) is bounded by

max
{
ef , e(n/2)f

}
� Zn(f ) � max

{
ef , e(n/2)f

}
pn, (5)

if d = 2, and

max
{
1, e(n/2)f

}
� Zn(f ) � max

{
1, e(n/2)f

}
pn, (6)

if d > 2, since there is at least one polygon of Z-span (n/2) and also since there is at least one
polygon of Z-span 1 in two dimensions and one polygon of Z-span zero if d > 2.

Theorem 2.1. Let f be finite. Then the limiting free energy of stretched polygons is defined
by

F(f ) = lim
n→∞

1

n
log Zn(f ),

where the limit is taken through even values of n.
In addition, Zn(f ) � (d − 1) enF(f )−f and F(f ) is convex in f and thus continuous and

also differentiable almost everywhere. Finally, f/2 � F(f ) � log µ + f/2 if f � 0 while
0 � F(f ) � log µ if f < 0.

Proof. Existence of the limit and the bound on Zn(f ) follow directly from equation (4)
and from the bounds in equations (5) and (6) [11], after application of a basic theorem on
subadditive functions, see [7, 11].

The Cauchy–Schwartz inequality gives

Zn(f1)Zn(f2) =
n/2∑
s=0

pn(s) ef1s

n/2∑
t=0

pn(t) ef2t

�
(

n/2∑
s=0

pn(s) e[(f1+f2)/2]s

)2

= (Zn((f1 + f2)/2))2.

Take logarithms of this, divide by n, and let n → ∞. This shows that

F(f1) + F(f2) � 2F((f1 + f2)/2).

Thus F(f ) is convex in f .
By equations (5) and (6), it follows that 0 � F(f ) � log µ if f < 0 and f/2 � F(f ) �

log µ + f/2 if f � 0. This completes the proof. �
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Figure 2. Cut-planes in this stretched polygon are indicated by the shaded strips. Pairs of cut-edges
are in bold in the shaded strips.

3. Cut-planes

The concatenation in figure 1 creates two parallel edges oriented in the Z-direction. This
construction can be reversed by deleting the two edges and filling in the resulting one-edge
gaps in the sub-polygons. Two edges such as these are pairs of cut-edges in a polygon.

Generally, it is not necessary for the cut-edges to be adjacent in the lattice; two edges are
a pair of cut-edges if they are parallel and also are the only pair of edges in a stretched polygon
between two planes Z = m and Z = m + 1, for some value of m. Examples of cut-edges in a
polygon are given in figure 2.

In this section we consider the incidence of cut-edges and cut-planes in stretched polygons.
In particular, we show that in the stretched regime (f > 0) for large enough values of f ,
almost all polygons will contain a positive density of cut-planes and cut-edges. This result
proves that there are open spaces available in the polygon where one may insert a pattern
(a sub-walk of a polygon), and makes possible the proof of a pattern theorem in section 4,
provided that f is large and positive.

If two polygons A and B are concatenated to obtain a new polygon C as in figure 1, then A

and B are the components of C. A and B will also be called sub-polygons in C. Concatenating
two polygons as in figure 1 creates both a cut-plane and a pair of cut-edges in a polygon.

A spanning walk of length n and Z-span s is a self-avoiding walk in the slab Ls with
endpoints in the planes Z = 0 and Z = s, respectively. Spanning walks between the vertices
labeled by bullets in figure 3 occur between the top and bottom bounding planes of a slab
containing a polygon. A pair of spanning walks is also illustrated in figure 4. In this case, two
spanning walks of the slab are also mutually avoiding.

Cut-edges in a pair of spanning walks are two parallel edges which are also the only edges
between two planes Z = m and Z = m + 1, for some value of m. The pair of spanning walks
in figure 4 has two pairs of cut-edges, each pair intersecting a cut-plane.

The two walks in a pair of spanning walks of a slab L − s are called its components.
Observe that while the two components are self-avoiding, interactions amongst them are
ignored. Any one or both components may be translated normal to the Z-direction.

3.1. Cut-planes and stretched polygons

Let pn(s;N) be the number of stretched polygons in Ls with exactly N cut-planes. If n is odd,
or if N > s or N > n/2 − 1, then pn(s;N) = 0. Assume that n is always even. The partition
function of stretched polygons of length n with �bn� cut-planes is

5
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Figure 3. A stretched polygon in a slab can be decomposed into two spanning walks by cutting
it in its lexicographic bottom vertex in the bottom bounding plane and in its lexicographic most
vertex in its top-bounding plane. The resulting pair of spanning walks has coincident endpoints
and has the same cut-planes as the original stretched polygon. In this figure the endpoints of the
spanning walks are indicated by (•). Translating any one of the two components or both, normal
to the Z-direction, will not destroy or create cut-planes.

Figure 4. A pair of spanning walks in a slab with two cut-planes indicated by the shaded regions.
Cut-edges in a polygon are indicated in bold in the shaded squares. Each walk in this pair is a
spanning walk of the slab. The endpoints of the spanning walks are indicated by (◦).

Zn(f ; �bn�) =
n/2−1∑
s=0

pn(s; �bn�) ef s . (7)

Define the limsup

µb(f ) = lim sup
n→∞

[Zn(f ; �bn�)]1/n, (8)

and log µb(f ) may be interpreted as the limiting free energy of stretched polygons at force f

with a density b of cut-planes. Naturally, 0 � b < 1/2.
By concatenating two polygons as in figure 1, it follows that

Zn(f ; �b1n�)Zm(f ; �b2m�) � Zn+m(f ; �b1n� + �b2m� + 1).

If b = b1 = b2, then this shows that Zn(f ; �bn� − 1) is a supermultiplicative function of n.
More generally, one may check that Zn(f ; �bn� − 1) satisfies assumption 3.1 in [12]. Thus,
by lemmas 3.2, 3.3 and theorems 3.5 and 3.6, in [12], the following may be shown:

Theorem 3.1. Let b ∈ [0, 1/2) and let Zn(f ; �bn�) be the partition function of stretched
polygons of length n and with �bn� cut-planes. Then, if µb(f ) is defined as in equation (8), it
follows that for all finite values f ,

6
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(a)

µb(f ) = lim
n→∞[Zn(f ; �bn�)]1/n;

(b) if δn/n → b as n → ∞, where b ∈ [0, 1/2), then

µb(f ) = lim
n→∞[Zn(f ; δn)]

1/n;
(c) µb(f ) is a concave function of b ∈ [0, 1/2), and so is continuous in (0, 1/2) and

differentiable almost everywhere in (0, 1/2).

It is also necessary to prove that µb(f ) is right continuous at b = 0. This is not immediate,
and requires an examining of the relation between spanning walks and stretched polygons.

3.2. Cut-planes and spanning walks

In this section, pairs of spanning walks are related to stretched polygons with the goal of
proving right continuity of µb(f ) at b = 0.

Any stretched polygon may be decomposed into a pair of spanning walks with coincident
endpoints by cutting the polygon in its lexicographic least vertex in the bottom bounding plane
of the slab containing it and in its lexicographic most vertex in the top bounding plane of the
slab containing it. This is illustrated in figure 3.

By cutting a stretched polygon into spanning walks in two vertices in the top and bottom
bounding planes of the slab (as in figure 3), a pair of spanning walks of the slab Ls is obtained.
The cut-planes and cut-edges of the pair of walks are preserved, even if the two components
are translated with respect to one another. More generally, one may consider pairs of spanning
walks (which may intersect each other), but which together have a given number of cut-planes.
An example of such a pair is illustrated in figure 4.

Let c∗
n(s;N) be the number of pairs of spanning walks of the slab Ls , with exactly N

cut-planes and total length n. The partition function of these pairs of spanning walks is defined
by

Z∗
n(f ;N) =

n/2∑
s=0

c∗
n(s;N) ef s . (9)

By cutting a stretched polygon in its top and bottom planes into pairs of spanning walks,
as illustrated in figure 3, one observes that pn(s;N) � c∗

n(s;N), or in terms of partition
functions,

Zn(f ;N) � Z∗
n(f ;N). (10)

A component C in a pair of spanning walks of Ls is a self-avoiding walk with vertices
{cj }mj=0 and it is X-unfolded if the X-coordinates of the vertices satisfy X(c0) � X(cj ) < X(cm)

for j = 0, 1, 2, . . . , m − 1, where (X(c), Y (c), . . . , Z(c)) are the Cartesian coordinates of
the vertex c. The construction for unfolding a self-avoiding walk in a given direction is well
understood [9] and it introduces a factor of eo(m) for walks of length m. Each component of
a pair of spanning walks can be unfolded: let c

†
n(s;N) be the number of such pairs of total

length n with N cut-planes, then the result is

c∗
n(s;N) � eo(n)c†n(s;N), (11)

since unfolding, which involves the reflections of parts of the components through hyperplanes
normal to the X-direction, does not create or destroy pairs of cut-edges. In terms of partition
functions, the above becomes

Z∗
n(f ;N) � eo(n)Z†

n(f ;N), (12)

7
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Figure 5. A pair of spanning walks with both components unfolded in a slab with two cut-planes
indicated by the shaded regions. Cut-edges in a polygon are indicated in bold in the shaded squares.
The endpoints of the spanning walks are indicated by (◦).

Figure 6. A loop of Z-span s in Ls . A cut-plane is indicated by the shaded region. Cut-edges in
a polygon are indicated in bold in the shaded squares. The endpoints of the loop are indicated by
(◦) and separated by the vector v.

where Z∗
n(f ;N) is the partition function of pairs of spanning walks of total length n and with

N cut-planes, and Z
†
n(f ;N) is the partition function of pairs of spanning walks with unfolded

components of total length n and with N cut-planes. An example of a pair of spanning walks
with unfolded components is given in figure 5.

A loop of Z-span s is a self-avoiding in Ls with both endpoints in the bottom bounding
plane. Let ln(s;N) be the number of loops of length n, of span s with N cut-planes, and define
ln(s;N; v) to be the number of loops of length n of span s with N cut-planes and with the
vector v separating its two endpoints.

Observe that by reflecting one unfolded component in a pair of unfolded spanning walks,
one may identify their endpoints to create a loop of the same total length. This in particular
shows that

c†n(s;N) � nln(s;N), (13)

where the factor of n arises because a loop may be decomposed into spanning walks by cutting
it in at most n points. In terms of partition functions, this becomes

Z†
n(f ;N) � nLn(f ;N), (14)

where Ln(f ;N) = ∑
s�0 ln(s;N) ef s is the partition function of loops.

For a fixed value of f , let the partition function for loops with endpoints separated by
v be Ln(f ;N; v). For given n and N, there is a vector w which maximizes Ln(f ;N; v):
Ln(f ;N; v) � Ln(f ;N; w) for any vector v. The vector w is the most popular value of v.
An example of such loops is illustrated in figure 6. Since the number of vectors v which can

8
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Figure 7. Concatenating two loops with the same vector separating their endpoints is done by
inserting two new edges and creating one extra cut-plane. The endpoints of the loops are indicated
by (◦) and separated by the most popular value of the vector v separating the endpoints of the loops
for given f . The result is a stretched polygon.

be between the endpoints of a loop is bounded by nd−1, the result is that

Ln(f ;N) =
∑

v

Ln(f ;N; v) � nd−1 max
v

(Ln(f ;N; v)) = nd−1Ln(f ;N; w). (15)

By turning one loop upside down, it can be concatenated with another loop with the same
vector separating the endpoints as illustrated in figure 7. Since there are ln(s − s1;N; w)

choices for the top loop, and ln(s1;N; w) choices for the bottom loop, the result is that∑
s1

ln(s − s1;N; w)ln(s1;N; w) � p2n+2(s; 2N + 1). (16)

Multiply this by ef s and sum over s. The result is that

[Ln(f ;N; w)]2 � Z2n+2(f ; 2N + 1). (17)

Comparison with equation (15) then shows that

[Ln(f ;N)]2 � n2d−2[Ln(f ;N; w)]2 � n2d−2Z2n+2(f ; 2N + 1). (18)

By combining the inequalities in equations (12), (14) and (18), one obtains

[Z∗
n(f ;N)]2 � eo(n)n2dZ2n+2(f ; 2N + 1). (19)

By comparing this to equation (10) and by choosing N = �bn�, after taking logarithms,
dividing by n and letting n → ∞ and using the results in theorem 3.1, one obtains the
following lemma.

Lemma 3.2. Let f be fixed. Then

lim
n→∞

1

n
log Z∗

n(f ; �bn�) = lim
n→∞

1

n
log Zn(f ; �bn�).

In other words, pairs of spanning walks have the same limiting free energy as stretched
polygons. In particular, if b = 0, then Z∗

n(f ; 0) = [µ0(f )]n+o(n).
Similarly, for pairs of spanning walks and stretched polygons with any number of cut-

planes,

lim
n→∞

1

n
log Z∗

n(f ) = lim
n→∞

1

n
log Zn(f ).

This lemma can be used to prove that µb(f ) is right continuous at b = 0.

9
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Theorem 3.3. For all finite values of f the function µb(f ) is right continuous at b = 0:

lim
b→0+

µb(f ) = µ0(f ).

Proof. Consider polygons of length n and �bn� cut-planes counted by pn(s; �bn�). Cut these
polygons in all their cut-planes into �bn� + 1 pairs of spanning walks (with no cut-planes) of
lengths ni and Z-spans si (where

∑
i si = s − �bn� and

∑
i ni = n − 2�bn�).

Since every polygon with �bn� cut-planes may be decomposed in this way, this shows
that

pn(s; �bn�) � 2�bn�+1
∑
{ni }

∑
{si }

δ

(
n − 2�bn� −

∑
i

ni

)
δ

(
s − �bn� −

∑
i

si

) �bn�+1∏
i=1

c∗
ni
(si; 0),

and the sums over {ni} and {si} are over all the possible values of ni and si . The factor 2�bn�+1

arises by noting that there are two choices for connecting the two spanning walks in each pair
back into the stretched polygon. Multiply this by ef s and sum over s. This shows that

Zn(f ; �bn�) � 2�bn�+1 e�bn�f ∑
{ni }

δ

(
n − 2�bn� −

∑
i

ni

) �bn�+1∏
i=1

Z∗
ni
(f ; 0).

The number of terms on the right-hand side of this inequality is at most
(

n/2
�bn�

)
since the

maximum Z-span of the polygon is at most n/2.
These arguments show that for {ni} which maximize the right-hand side,

Zn(f ; �bn�) � 2�bn�+1 e�bn�f
(

n/2

�bn�
) �bn�∏

i=0

Z∗
ni
(f ; 0). (20)

Assume, without loss of generality, that n0 � n1 � · · · � n�bn� for each value of n. Consider
the limsups

lim sup
n→∞

ni

n
= αi

and observe that α0 � α1 � α2 � · · · � 0.
Then by theorem 3.1

lim
n→∞

[�bn�∏
i=0

Z∗
ni
(f ; 0)

]1/n

= lim
n→∞

[
Z∗

n0
(f ; 0)

]1/n · lim
n→∞

[�bn�∏
i=1

Z∗
ni
(f ; 0)

]1/n

and hence by lemma 3.2,

lim
n→∞

[�bn�∏
i=0

Z∗
ni
(f ; 0)

]1/n

� [µ0(f )]α0 lim
n→∞

[�bn�∏
i=1

Z∗
ni
(f ; 0)

]1/n

.

Inductively,

lim
n→∞

[�bn�∏
i=0

Z∗
ni
(f ; 0)

]1/n

� [µ0(f )]
∑

αi .

10
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Next, we note that partial sums of ni are bounded: for each finite fixed N,
∑N

i=0 ni � n−2�bn�,
and hence

∑
αi � 1 − 2b. Since µ0(f ) � 1,5 it follows that

lim
n→∞

[�bn�∏
i=0

Z∗
ni
(f ; 0)

]1/n

� [µ0(f )]
∑

αi � [µ0(f )]1−2b .

Thus, by taking the 1/n power of equation (20),

µb(f ) � 2b ebf [µ0(f )]1−2b

bb(1/2 − b)1/2−b
√

2
.

Take b → 0+ to see that

lim
b→0+

µb(f ) � µ0(f ).

However, since µb(f ) is concave, µ0(f ) � limb→0+ µb(f ). This completes the proof. �

One may extend the definition of µb(f ) to the interval [0, 1/2] by defining
limb→1/2− µb(f ) = µ1/2(f ). Then µb(f ) is concave and continuous on the interval [0, 1/2].

3.3. F(f ) and µb(f )

µb(f ) is closely related to F(f ), the limiting free energy of stretched polygons. In particular,
fix f and define bn for each n by Zn(f ; bn) = maxm Zn(f ;m). This implies that

Zn(f ; bn) � Zn(f ) �
n/2∑
m=0

Zn(f ;m) � (n/2 + 1)Zn(f ; bn). (21)

This inequality gives the following lemma:

Lemma 3.4. There exists a b ∈ [0, 1/2] for each fixed finite value of f , such that

µb(f ) = sup
c∈[0,1/2]

µc(f ) = eF(f ).

Proof. Take the power 1/n of equation (21), and let n → ∞. By theorem 3.1(b) and
theorem 2.1 this shows that

lim
n→∞[Zn(f ; bn)]

1/n = eF(f ).

Moreover, if lim supn→∞(bn/n) = b, then this shows that there exists a b ∈ [0, 1/2] such that

sup
c∈[0,1/2]

µc(f ) = µb(f ) = eF(f ).

This completes the proof. �

The next theorem is the key idea underlying the construction of a pattern theorem for
stretched polygons. It shows that the function µb(f ) is strictly increasing at b = 0, for
sufficiently large values of f .

5 This is obvious if d � 3. If d = 2, we note that by bounding Zn(f, 0) below by polygons in a slab of width three
with no cut-planes,

Zn(f, 0) � pn−k(3, 0) e3f

where k is some positive constant. By taking the power 1/n and n → ∞, this shows µ0(f ) = limn→∞[Zn(f, 0)]1/n �
limn→∞[pn−k(3, 0)]1/n > 1, since the number of polygons in a slab of width three grows exponentially in their
lengths.

11
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Figure 8. A polygon with �bn� cut-planes has maximal span at most (n − �bn� − c)/4, where
c = 6 in two dimensions. A slightly different conformation in three dimensions shows that c = 4
in three and higher dimensions.

Theorem 3.5. There is an f0 such that for all forces f > f0 there exists a b > 0 such that
µ0(f ) < µb(f ).

Proof. Let pn(s; 0) be the number of stretched polygons of length n and Z-span s, and with 0
cut-planes. Such polygons have maximal span s at most �(n−c)/4� (see figure 8), where c = 6
in two dimensions, and c = 4 in three and higher dimensions. Thus, Zn(f ; 0) � pn e�(n−c)/4�f

if f � 0, where pn is the number of polygons of length n. Taking the power 1/n and letting
n → ∞ then shows that

µ0(f ) � µ ef/4,

where µ is defined in equation (1).
On the other hand, if a stretched polygon contains exactly �bn� cut-planes, then

Zn(f, �bn�) � e(�bn�+(n−2�bn�−c)/4)f since there are stretched polygons with total span
�bn� + (n − 2�bn� − c)/4 and exactly �bn� cut-planes (see figure 8). Taking the power
1/n and letting n → ∞ then shows that

µb(f ) � ef/4+bf/2.

Comparing these results proves that µ0(f ) < µb(f ) provided that ebf/2 > µ. This is so if
f > (2 log µ)/b. Since b ∈ (0, 1/2), for every f > 4 log µ one can choose a b ∈ (0, 1/2) to
see that µ0(f ) < µb(f ), since µb(f ) is right continuous at b = 0 and concave for b ∈ [0, 1/2]
by theorems 3.1 and 3.3.

Put f0 = 4 log µ, then for any f > f0 there is a b > 0 such that µ0(f ) < µb(f ). This
completes the proof. �

By theorem 3.1(b), lemmas 3.4 and 3.2 we obtain the following:

Corollary 3.6. There is a fixed f0 such that for any fixed finite positive value of f > f0 there
exists a b ∈ (0, 1/2] such that

lim
n→∞[Z∗

n(f ; �bn�)]1/n = lim
n→∞[Zn(f ; �bn�)]1/n = eF(f ).

In other words, the above is an equality for some value of b > 0.

The significance of this result is that it is in particular valid for large values of f > f0.

4. Events in stretched polygons

In this section the discussion will be limited to stretched polygons with a force f > f0, where
f0 is defined in theorem 3.5. In these circumstances, corollary 3.6 is applicable, and a class of

12
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Figure 9. A schematic diagram illustrating the pasting of an arbitrary polygon into a stretched
polygon at a cut-plane. In this example, a polygon K of span s0 in a slab Ls0 is translated and
then concatenated at the cut-plane into a stretched polygon, increasing the Z-span of the stretched
polygon by s0 + 1.

(a) (b)

Figure 10. Possible conformations of the polygon K in figure 9. In (a), K is a knotted polygon,
while (b) is an unknotted polygon. These events do not have cut-planes and are irreducible.

stretched polygons with a positive density of cut-planes determines the limiting free energy in
the model.

The basic construction in this section is illustrated in figure 9: a polygon K is translated to
a cut-plane of a stretched polygon. The stretched polygon is decomposed by deleting the pair
of cut-edges in the cut-plane and its components are moved apart to create space for inserting
K, possibly rotated by 90◦ about the Z-axis to line up edges which must be concatenated. K
is inserted by concatenating it to a sequence of edges in the Z-direction along one of the lines
which contained the original cut-edges.

When the polygon K is concatenated into a stretched polygon in this way, it maintains all
its edges, save one, and it is called an event. An event in a stretched polygon is irreducible
if it does not contain any cut-edges of the stretched polygon. The events in figure 10 are
irreducible. Observe that if the cut-edges in a cut-plane of a polygon are deleted, that the
irreducible event K will not be affected, it will still occur in one of the resulting pairs of
spanning walks. Observe that an event may occur any number of times in a stretched polygon.
We assume in what follows that all events are irreducible.

Let P be an arbitrary self-avoiding walk. P occurs in a polygon K of Z-span s0 if P can
be translated to become identical with a sub-walk in K see figure 11. In this case, P is called
a pattern. Observe that if a pattern can occur three times in a polygon, then it can potentially
occur any number of times; such patterns are called proper, and all patterns will be assumed
to be proper.

The first result is a proof that the class of stretched polygons in which a given event K
never occurs is an exponentially small subclass of stretched polygons, for f > f0.

13
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Figure 11. Occurrences of a pattern P in a stretched polygon. The pattern P on the left side is a
sub-walk of a polygon and it occurs in the stretched polygon on the right.

Define pn(s; �bn�, NK) to be the number of polygons of length n and Z-span s, with �bn�
cut-planes and with N occurrences of the (irreducible) event K. Define the partition function
of this class of polygons by Zn(f ; �bn�, NK).

Using the same arguments leading to theorem 3.1 (see [12]), define the limits

µb(K, f ) = lim
n→∞[Zn(f ; �bn�, 0K)]1/n = lim

n→∞[Zn(f ; δn, 0K)]1/n, (22)

where δn/n → b as n → ∞. Then µb(K, f ) may be shown to be concave for b ∈ [0, 1/2)

and thus continuous in (0, 1/2). One may also show that µb(K, f ) is right continuous at
b = 0 by using the arguments leading to theorem 3.3. In addition, exactly as in theorem 3.5
and corollary 3.6, there exists a b > 0 such that µ0(K, f ) < µb(K, f ) if f > f0.

Lemma 4.1. Suppose f > f0 and K is the event that a given polygon occurs. Then for any
b ∈ (0, 1/2) it is the case that

µb(K, f ) = lim
n→∞ [Zn(f ; �bn�, 0K)]1/n < eF(f ).

Moveover, µb(K, f ) is concave on [0, 1/2) and right continuous at b = 0.

Proof. Suppose that K is the (irreducible) event that a polygon of length k and Z-span s0

occurs.
Concavity and right continuity at b = 0 follow from arguments similar to theorem 3.3. It

remains to show that µb(K, f ) = limn→∞ [Zn(f ; �bn�, 0K)]1/n < eF(f ).
Consider polygons counted by pn(s; �bn�, 0K). If A is such a polygon of length n, then

it has �bn� cut-planes. Let 0 < δ < b, and choose �δn� cut-planes. Perform the construction
in figure 9 at each of the chosen cut-planes. This increases the length of A by k�δn� (for some
fixed k) and increases the Z-span by (s0 + 1)�δn�. The number of cut-planes is also increased
by �δn�. Thus (�bn�

�δn�
)

pn(s; �bn�, 0K) � pn+k�δn�(s + (s0 + 1)�δn�; �bn� + �δn�, �δn�K).

Multiply this by ef s and sum over s:(�bn�
�δn�

)
Zn(f ; �bn�, 0K) � e−(s0+1)�δn�f Zn+k�δn�(f ; �bn� + �δn�, �δn�K).

Take the power 1/n and the limit of the left-hand side as n → ∞. The partition function
on the right-hand side is bounded above in the limit by the partition function of all stretched
polygons, and so the result is that[

bb e(s0+1)δf ekδF(f )

δδ(b − δ)b−δ

]
lim

n→∞[Zn(f ; �bn�, 0K)]1/n � eF(f )

14
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after terms have been rearranged. If the value of b is fixed at a value bigger than zero, then
for small enough values of δ > 0 the factor in square brackets above is strictly larger than 1.
This proves the lemma. �

Since µ0(K, f ) < µb(K, f ) if f > f0 and µb(K, f ) is right continuous at b = 0,
lemma 4.1 is true for any b ∈ [0, 1/2) if f > f0. Define µ1/2(K, f ) = limb→1/2− µb(K, f ).
Since Zn(f ; n/2 − 1; 0K) = ef (n/2−1), it also follows that µ1/2(K, f ) � ef/2 < eF(f ) since
by theorem 2.1 F(f ) > f/2 if f > 0. Thus, µb(K, f ) is continuous on the interval [0, 1/2]
and bounded away from eF(f ) if f > f0. In these circumstances µb(K, f ) is uniformly
bounded away from eF(f ) for b ∈ [0, 1/2]. We state this in corollary 4.2.

Corollary 4.2. Suppose that f > f0. Then for any b ∈ [0, 1/2) it is the case that

µb(K, f ) = lim
n→∞ [Zn(f ; �bn�, 0K)]1/n < eF(f ).

In addition µb(K, f ) is uniformly bounded away from eF(f ); there exists an ε > 0 independent
of b such that for any b ∈ [0, 1/2],

µb(K, f ) = lim
n→∞ [Zn(f ; �bn�, 0K)]1/n � eF(f )(1 − ε).

The result of lemma 4.1 and corollary 4.2 is that the exponential growth rate of Zn(f ; 0K)

is strictly less than eF(f ), provided that f > f0.

Theorem 4.3. Suppose that f > f0. Then

lim
n→∞[Zn(f ; 0K)]1/n < eF(f ).

Proof. Observe that

Zn(f ; 0K) =
n/2∑
m=0

Zn(f ;m; 0K).

For fixed values of f and any value of n, there exists a δn such that Zn(f ;m; 0K) �
Zn(f ; δn; 0K) for any value of m. Hence

Zn(f ; δn, 0K) � Zn(f ; 0K) � (n/2 + 1)Zn(f ; δn, 0K). (23)

By corollary 4.2 there exists an ε > 0 such that if f > 0, then

lim sup
n→∞

[Zn(f ; δn; 0K)]1/n � eF(f )(1 − ε).

In other words, from equation (23), if f > f0 then

lim
n→∞[Zn(f ; 0K)]1/n = lim sup

n→∞
[Zn(f ; δn; 0K)]1/n � eF(f )(1 − ε).

This proves the theorem. �

This theorem shows that, for values of f > f0, the partition function of the class of
stretched polygons in which a given event K does not occur is exponentially small compared
to the partition function of all stretched polygons. In particular, events such as those illustrated
in figure 10 will occur at least once in almost all sufficiently long stretched polygons. This
result may be strengthened to show that almost all sufficiently long stretched polygons contain
a positive density of a given event K, in a sense which will be explained below.

One may now repeat the set of constructions in section 3 leading to lemma 3.2 to see
that if Z∗

n(f, 0K) is the partition function of pairs of spanning walks of total length n not
containing the event K, then if K is an irreducible event, one obtains the following.
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Corollary 4.4. Suppose that f > f0. Then

lim
n→∞[Z∗

n(f ; 0K)]1/n = lim
n→∞[Zn(f ; 0K)]1/n < eF(f ).

A set of N − 1 cut-planes cuts a polygon of length n into N pairs of spanning walks
of almost equal length if the combined length of each pair of spanning walks is at least
�(n − 2N + 2)/N� and at most 
(n − 2N + 2)/N�.

Define p
‡
n(s; �bn�, NK) to be the number of stretched polygons, with at most N

occurrences of the event K, of length n and Z-span s, and with at least �bn� cut-planes
of which a subset consisting of exactly �bn� cut-planes cuts each polygon into �bn� − 1 pairs
of spanning walks of almost equal total lengths. The partition function of this set is denoted
by Z

‡
n(f ; �bn�, NK).

Theorem 4.5. Suppose that f > f0. Let K be an event which may occur in a stretched
polygon. Then for any 0 < b < 1/2 there is a ρ0 > 0 such that

lim sup
n→∞

[
Z‡

n(f ; �bn�, �ρn�K)
]1/n

< eF(f )

uniformly for b ∈ (0, 1/2) and for 0 � ρ � ρ0.

Proof. For fixed values of b > 0 and ρ � 0, consider stretched polygons with �bn� cut-planes
which cut the polygons into almost equal length pairs of spanning walks, and with exactly �ρn�
occurrences of the event K, counted by p

‡
n(s; �bn�, �ρn�K). Since the events are assumed to

be irreducible, cutting the stretched polygon in the cut-planes will not destroy any event K.
These stretched polygons have �bn� cut-planes cutting them into m = �bn� + 1 pairs of

spanning walks of almost equal total length (at least �n/m�). Let ρ > 0 be small and fix ε > 0
also small.

By theorem 4.3 and corollary 4.4 there is an N0 such that for all n � N0,

Z∗
n(f ; 0K) � [eF(f )(1 − ε)]n,

if ε > 0 was fixed small enough, but independent of b and ρ.
In addition, by lemma 3.2 there exists an N1 such that for n � N1,

Z∗
n(f ) � [eF(f )(1 + ε)]n,

for the same value of ε > 0 fixed above.
Each stretched polygon counted by p

‡
n(s; �bn�, �ρn�K) may be considered to be an

ordered sequence of m pairs of spanning walks of almost equal length, separated by �bn�
cut-planes, and in which at most �ρn� of these pairs of spanning walks the event K may occur
at least once.

The �bn� + 1 pairs of spanning walks defined by the cut-planes may be reordered by
excising any pair between its cut-planes and inserting it back at any other cut-plane (and
where any intersections between the components of the pair are now ignored). This does not
change the overall Z-span or length. Use this construction to reorder the pairs in sequence such
that the first j may each contain the event K, and the remaining �bn� + 1 − j do not contain K.

If there were j pairs of spanning walks which contain K, then at most
(�bn�+1

j

)
polygons may

be reordered onto the same structure.
This construction reorders each polygon into two parts: a first part which is a pair of

spanning walks of total length at most j (�n/m� + 2) which contains copies of K and of length
q1 at least j�n/m� and span s1. The remaining part is a pair of spanning walks of length q2 at
least (m − j)�n/m� and at most (m − j)(�n/m� + 2) and span s2, where s1 + s2 = s − 1, and
these walks may not contain the event K. In addition q1 + q2 = n and j � �ρn�.
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The number of conformations of pairs of walks which may contain the event K and of
length q1 and span s1 is at most p∗

q1
(s1), and the number of pairs of walks of length q2 and

span s2 which do not contain copies of K is p∗
q2

(s2, 0K). This shows that

p‡
n(s; �bn�, �ρn�K) �

�ρn�∑
j=0

(
m

j

)∑
{qi }

∑
{si }

[p∗
q1

(s1)][p
∗
q2

(s2, 0K)]δ

(
s − 1 −

∑
k

sk

)
,

where the sum over qi is constrained and depends on j , as above. Multiply by ef s and sum
over s. This shows that

Z‡
n(f ; �bn�, �ρn�K) � ef

�ρn�∑
j=0

(
m

j

) ∑
{qi }

[
Z∗

q1
(f )

][
Z∗

q2
(f ; 0K))

]
. (24)

Since Z∗
q1

(f ) and Z∗
q2

(f ; 0K) both increase exponentially with q1 and q2, for small values
of ρ, the terms on the right-hand side are dominated by the j = �ρn� term. For this value of
j , if n is taken large enough that qi � min{N0, N1}, this term is smaller than

ef

(
m

�ρn�
) ∑

{qi }
[eF(f )(1 + ε)]q1 [eF(f )(1 − ε)]q2 ,

where we recall that q1 is between �ρn��n/m� and �ρn�(�n/m� + 2) and q2 is between
(m − �ρn�)�n/m� and (m − �ρn�)(�n/m� + 2), and where m = �bn� + 1 and q1 + q2 = n.

Take the power 1/n of this. Since terms in equation (24) above are dominated by the
j = �ρn� term, for small enough values of ρ > 0, it follows that if n → ∞, then

lim sup
n→∞

[
Z‡

n(f ; �bn�, �ρn�K)
]1/n �

[
eF(f )bb

ρρ(b − ρ)b−ρ

] (
1 + ε

1 − ε

)ρ/b

(1 − ε) . (25)

Finally, observe that there is a ρ0 such that the factor[
bb

ρρ(b − ρ)b−ρ

](
1 + ε

1 − ε

)ρ/b

(1 − ε) =
[[

1

(ρ/b)ρ/b(1 − ρ/b)1−ρ/b

]b( 1 + ε

1 − ε

)ρ/b
]

(1 − ε)

is strictly smaller than 1 if 0 < ρ < ρ0 � b, since the factor in square brackets approaches 1
as ρ → 0+. Thus, for any b ∈ (0, 1/2] one may take ρ small enough so this factor becomes
less than (say) (1 − ε/2) for a fixed value of ε. This proves the theorem. �

This result gives the following theorem:

Theorem 4.6. Suppose that f > f0 and that K is an event which may occur in stretched
polygons. Then there exists a ρ0 > 0 such that for all 0 � ρ � ρ0

lim sup
n→∞

[Zn(f ; �ρn�K)]1/n < eF(f ).

Proof. Consider stretched polygons in the partition function Zn(f ; �ρn�K). By concatenating
N + 1 such polygons as in figure 1, a stretched polygon of length n(N + 1) + 2N with N cut-
planes cutting it into sub-polygons of length n is obtained, and in which the event K occurs at
most �ρn�(N + 1) times. This shows in particular that

[Zn(f ; �ρn�)]N+1 � Z
‡
n(N+1)+2N(f ;N; �ρn�(N + 1)K).

Take the power 1/(n(N + 1) + 2N) of this, and let N → ∞:

[Zn(f ; �ρn�)] 1
n+2 � lim sup

N→∞

[
Z

‡
n(N+1)+2N(f ;N; �ρn�(N + 1)K)

] 1
n(N+1)+2N

� lim sup
m→∞

[
Z‡

m(f ; δm,n, �ρm�K)
] 1

m ,
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where δm,n = �(m − n)/(n + 2)� and where we note that �ρn�(N + 1) = �ρn�((m − n)/(n +
2) + 1) � �ρm� if m = n(N + 1) + 2N .

By theorem 4.5, for any given fixed n, there is an ε > 0 (independent of n if ε is small
enough) and a ρ0 > 0 (dependent on n) such that for all 0 � ρ � ρ0,

lim sup
m→∞

[
Z‡

m(f ; δm,n, �ρm�K)
] 1

m � (1 − ε) eF(f ).

Thus, there is an ε > 0 and a ρ0 > 0 such that for all 0 � ρ � ρ0,

[Zn(f ; �ρn�)] 1
n+2 � (1 − ε) eF(f ).

Next, choose n large enough, and ρ0 small enough, such that

lim sup
m→∞

[Zm(f ; �ρ�K)]1/m < (1 + ε)[Zn(f ; �ρn�)] 1
n+2 ,

for the value of ε above (which is independent of n). This shows that

lim sup
m→∞

[Zm(f ; �ρ�K)]1/m < (1 − ε2) eF(f )

for 0 � ρ � ρ0, for some ρ0 > 0. This completes the proof. �

Observe that theorem 4.6 states that if K is an event and f > f0, then K will occur with a
positive density in almost all polygons of length n, and with positive density with probability
1 as if n → ∞. The occurrence of K is in the sense illustrated in figure 9.

This result may strengthened as follows: we say that a self-avoiding walk L is a stretched
pattern if there exists a stretched polygon which contains L as a sub-walk. We say that
a stretched pattern L occurs in a stretched polygon P if P contains a sub-walk which is a
translate of L: that is, L is identical to a sub-walk in P. P contains Lm times if m copies
of L can be translated onto m distinct sub-walks of P. Define Zn(f ;mL) to be the partition
function of stretched polygons of length n at force f which contains exactly m copies of
a stretched pattern L. Then one may repeat the arguments starting in lemma 4.1 by inserting
stretched polygons containing a given stretched pattern L at cut-planes to prove that any given
stretched pattern will occur with positive density with probability 1 in stretched polygons if
f > f0 as n → ∞. We make this precise as follows:

Theorem 4.7. Let f > f0 and let L be a stretched pattern. Then there exists a ρ0 > 0 such
that for all 0 � ρ � ρ0

lim sup
n→∞

[Zn(f ; �ρn�L)]1/n < eF(f ).

In particular, for sufficiently small values of ε > 0 and ρ0 > 0 there exists an N0 such that for
all n � N0 and for all ρ ∈ [0, ρ0]

[Zn(f ; �ρn�L)]1/n � eF(f )(1 − ε).

5. Applications

In this section, we confine the model to three dimensions and consider the implications of the
pattern theorem for knotting and writhing of a stretched polygon given large positive (pulling
or stretching) forces.
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Figure 12. A stretched pattern occurring in a stretched polygon as the sub-walk with endpoints
denoted by the bullets. This will be an irreducible event in a stretched polygon.

5.1. Knotting probability

Consider the event in figure 12 or equivalently the event in figure 10(a). If this event occurs in
a stretched polygon, then the knot type of the polygon is a connected sum with at least one non-
trivial factor, and so it is not trivial. Let K denote this event and suppose that Zn(f ; �ρn�K) is
the partition function of stretched polygons of length n which contain the event exactly �ρn�
times, for some ρ > 0. From theorem 4.6 we obtain the following lemma.

Lemma 5.1. There exists a ρ0 > 0 such that for all 0 � ρ < ρ0 and for f > f0

lim
n→∞

Zn(f ; �ρn�K)

Zn(f )
= 0

where K is the event that a knotted polygon occurs as given in figure 12.

Proof. Let K be any event. Then by theorem 4.6 there exists a ρ0 > 0 such that for any
0 � ρ � ρ0, and all n large enough (say n � N ),

Zn(f ; �ρn�K) � enF(f )(1 − ε)n,

provided that f > f0. Since Zn(f ) = enF(f )+o(n), the lemma follows. �

Lemma 5.1 implies that the Frisch–Wasserman–Delbrück conjecture is true for stretched
polygons of arbitrarily large but finite f , where f > f0 [1, 4]. This can be made precise by
defining Zn(f ; ∅) to be the partition function of all stretched polygons at force f with knot
type the unknot ∅. Clearly, for any finite value of n,

Zn(f ; ∅) �
�ρn�∑
m=0

Zn(f ;mK), (26)

where K is for example the event in figure 12.
Choose ρ0 > 0 as in lemma 5.1. The probability that a stretched polygon of length n is a

non-trivial knot is given by

Pr(f ; n) = Zn(f ) − Zn(f ; ∅)

Zn(f )
. (27)

By equation (26) if follows that

Pr(f ; n) � Zn(f ) − ∑�ρn�
m=0 Zn(f ;mK)

Zn(f )
. (28)

Thus, by taking n → ∞, and choosing ρ > 0 and ρ < ρ0, if follows from lemma 5.1 that

lim
n→∞ Pr(f ; n) � 1 − lim

n→∞

∑�ρn�
m=0 Zn(f ;mK)

Zn(f )
= 1 (29)

or limn→∞ Pr(f ; n) = 1, for any f > f0. This result gives the following theorem.
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Theorem 5.2. Suppose that f is an arbitrarily large but finite force such that f > f0. Then the
probability that a stretched polygon of length n is the unknot approaches 0 at an exponential
rate with increasing n. In other words, the limiting free energy of stretched polygons is
completely determined by knotted polygons.

One may prove a somewhat stronger result than this. Suppose that f is finite and f > f0.
Denote the expected number of times that the event K in figure 12 occurs in stretched polygons
of length n by 〈nK〉f . Then

〈nK〉f
n

=
∑

m�0 mZn(f ;mK)

nZn(f )

�
∑

m��ρn� mZn(f ;mK)

nZn(f )

� �ρn�
n

(∑
m��ρn� Zn(f ;mK)

Zn(f )

)
, (30)

where we choose 0 < ρ < ρ0, with ρ0 defined in lemma 5.1. Take n → ∞ in the last
equation. This shows that

lim inf
n→∞

( 〈nK〉f
n

)
� ρ > 0 (31)

for some value of ρ. In other words, given 0 < ε < ρ there exists an N, large but finite, such
that

〈nK〉f � (ρ − ε)n (32)

for all n > N . If ε is chosen small enough, then this shows that the event K occurs at least
(ρ − ε)n times in almost all polygons of length n. In other words, the knot type of almost all
polygons of length n > N has a factor Km, where m � (ρ − ε)n, for any finite value of f

such that f > f0, where ρ depends on f but is strictly bounded away from zero.

5.2. Writhing in stretched polygons

In this section, we generalize the results on the writhe of polygons obtained in [13]. In
particular, we show that for arbitrarily large values of the force f , the absolute value of the
writhe of a stretched polygon of length n grows faster than o(

√
n).

Let α be any piecewise linear and continuous curve in three space. A projection of α

into a plane with normal unit vector ξ may in general have crossings where the projected arcs
of α intersect other arcs transversely. The projection is regular if all singular points in the
projection are transverse crossings. The projection is turned into an oriented knot projection
by orienting the projected curve and by indicating which arc in the projection overpasses at
crossings. This is usually done by removing a small arc from the underpassing projected arc.
The crossing then has the appearance of one of the two cases indicated in figure 13. The sign
of a crossing is determined by a right-hand rule: take the overpassing arc into the right hand;
if the fingers curl around this arc in the direction of the arrow on the underpassing arc, then
the crossing is said to be positive or right handed. Otherwise it is negative or left handed.

The writhe of a simple closed curve α is defined as the sum of signed crossings averaged
over all directions ξ [5]. For lattice polygons in the cubic lattice the writhe can be computed
from the Lacher–Sumners theorem [18]: the writhe of a lattice polygon in the cubic lattice is
the average of the linking numbers of the polygon with its push-offs into four non-antipodal
octants.
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Figure 13. Signed crossings in a projection are determined by a right-hand rule: take the
overpassing arc in your right hand with thumb in the direction of the arrow. If the fingers curl
underneath the overpassing arc in the direction of the underpassing arc, then the crossing is positive.

Figure 14. Two stretched polygons with positive and negative writhe. The polygon marked A has
W(A) = +1/2, and the polygons marked B has W(B) = −1/2.

Figure 15. Cutting A from a stretched polygon.

The Lacher–Sumners theorem allows the explicit computations of the writhe of the
polygons in figure 14. The polygon marked by A has writhe W(A) = +1/2, and the polygon
marked B has write W(B) = −1/2. Both A and B may occur as events in a stretched polygon.
In particular, theorem 4.7 applies in this case, and the stretched patterns which are sub-walks
in the stretched polygons in figure 14 will occur with positive density in almost all stretched
polygons with f > f0.

The polygons in figure 14 may be cut from stretched polygon as illustrated for A in
figure 15. This construction will change the writhe of the polygon; suppose C is a polygon
containing the stretched pattern marked by A in figure 14, then this pattern may be cut from C
as illustrated in figure 15 to obtain a polygon C ′ and a small polygon containing A. One can
check that

W(C) = W(C ′) + W(A), (33)

see, for example, lemma 5.50 in [12]. With this result, it can now be proven that for any finite
value of f such that f > f0, the expected value of the writhe should increase at least as fast
as C

√
n for sufficiently large values of n, where n is the length of the stretched polygon, and

for some non-zero constant C.
Let Zn(f ;��ρn�) be the partition function of stretched polygons of length n containing

at least �ρn� occurrences of the stretched patterns A or B in figure 14.
If f > f0, then by theorem 4.7 there exists a ρ0 such that for all ρ ∈ [0, ρ0) and for all

n > N0, where N0 is a finite integer,

Zn(f ; �ρn�L) � enF(f ) e−kf n, (34)
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where kf > 0 is dependent on f . Thus, there exists a σ (say σ = ρ0/2) such that

Zn(f ;��σn�L) � enF(f ) e−kf n (35)

for some constant kf > 0 and for sufficiently large values of n.
In other words, the probability Pn(f ) that a stretched polygon contains at least

�σn� occurrences of the stretched patterns A or B is greater or equal to (Zn(f ) −
Zn(f ;��σn�L))/Zn(f ) or

Pn(f ) � 1 − enF(f ) e−kf n

Zn(f )
. (36)

The distribution of A or B in L is binomial along any polygon C which contains A and B at
least �σn� times. The probability that B occurs exactly k times amongst the �σn� occurrences
of A and B is less than 1/�σn�.

The writhe of C is composed of two terms as shown in equation (33). The first term is
obtained by truncating the �σn� occurrences of A and B as in figure 15, and the second term
is due to the contributions A and B make to the writhe.

Suppose that the absolute value of the writhe of C is less than g(n), where g(n) is some
function of n. Then the contribution to the writhe of C of the occurrences of A and B is one
of at most 
g(n)� + 1 different values. In other words,

Prob (|W(C)| < g(n)) � Pn(f )

g(n)� + 1√�σn� + (1 − Pn(f ))Rn, (37)

where we noted that contribution of A and B is at most (
g(n)�+ 1)/
√�σn�, and where Pn(f )

is the probability that C will contain at least �σn� occurrences of A and B at force f . But
Pn(f ), we say above, is at least 1 − enF(f ) e−kf n/Zn(f ), and since Zn(f ) = enF(f )+o(n), it
follows that Pn(f ) → 1 as n → ∞. Thus, if g(n) = o(

√
n), then Prob (|W(C)| < g(n)) → 0

as n → ∞. This gives the following theorem:

Theorem 5.3. Let C be a stretched polygon at force f with f > f0. Then for every function
g(n) = o(

√
n), the probability that the absolute value of the mean writhe of C is less than

g(n) approaches 0 as n → ∞.

6. Conclusions

In this paper, we examined entanglements in stretched polygons in the cubic lattice. The key
result is a pattern theorem for stretched polygons. The method of proof of this theorem is
based on the results in section 3 that cut-planes and pairs of cut-edges occur with positive
density in that class of polygons which makes the dominating contribution to the limiting
free energy in this model. The cut-planes cut the polygons into independent sub-polygons
separated by cut-planes. This is reminiscent of the Pincus argument [22] which describes
scaling in stretched polymers in the intermediate force regime by cutting the polymer into
independent ‘Pincus-balls’ which are composed of unperturbed pieces of the polymer.

The pattern theorem is stated explicitly in theorems 4.6 and 4.7, and it implies that for
sufficiently large positive (or stretching) values of the applied force a given pattern will occur
with positive density in almost all stretched polygons of length n, except in an exponentially
small class. The condition f > f0 in corollary 3.6 implies that this pattern theorem is only
valid for sufficiently large stretching values of the force. There exists a pattern theorem for
f = 0 [16], but a proof that a pattern theorem is valid for all finite f remains an open problem.

The pattern theorem for stretching forces in particular implies that in the strong stretching
regime (f � 0) entanglements as defined by knotting and writhing persist in the limit as
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n → ∞. This result follows from theorem 5.2, which states that the probability of knotting in
stretched polygons approaches unity as the length increases to infinity.

The results of lemma 5.1 imply that any stretched polygon will be badly knotted in the
limit as n → ∞. Since any knotted stretched pattern as in figure 12 will occur with positive
density, stretched polygons with a prime knot type will be exponentially rare: the knot type
will almost always contain a positive density of components of knot type 31. This implies
that the spans of the Jones and Alexander polynomials, the crossing numbers, the unknotting
numbers and other measures of knot complexity will increase on average at least linearly with
the length of the stretched polygon, for any large fixed positive value of the force f > gf0

[24].
For negative f (the compressive regime) the methods in this paper break down, and the

existence of a pattern theorem remains an open question.
Finally, the pattern theorem in this paper also has implications for geometric quantities

such as the writhe of the polygon. In section 5.3 we generalize a result of [13] to stretched
polygons with sufficiently large applied force: for every function g(n) = o(

√
n), the

probability that the absolute value of the mean writhe of the stretched polygon is less than
g(n) approaches 0 as n → ∞.
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